Brain Damage
Brain damage is an injury that causes the deterioration or destruction of brain cells. Brain damage includes both Traumatic Brain Injury (TBI), caused by an external force, and Acquired Brain Injury (ABI), occurring at the cellular level. The severity of damage can vary based on they type of injury, but can range from headaches, confusion, and memory problems, to more severe cognitive, behavioral, and physical disabilities.
Benefits of Hyperbaric Oxygen Therapy for Brain Damage:

Increases Amount of Oxygen in the Blood
Stimulates development of new blood vessels from pre-existing vessels as well as the natural development of new blood vessels.

Reduces Inflammation & Swelling
Suppresses the cellular activity of the immune system which triggers swelling when an injury or damage to the body occurs. While this reaction is meant to start healing and protect from injury it can result in secondary injury, pain, and prolonged recovery time.

Preserves, Repairs, & Enhances Cellular Functions
Boosts cellular metabolism, promotes rapid cell reproduction, and enhances collagen synthesis. Collagen is a protein in connective tissues like skin.
Key Research on Hyperbaric Oxygen Therapy for Brain Damage
Recent News on Hyperbaric Oxygen Therapy for Brain Damage
Oxygen Under Pressure Resolving TBI’s & Suicide – Hailed as Most Important Scientific Breakthrough for 2019
Research Triangle Park, NC (January 21, 2020) - Congressman Andy Biggs (AZ-05) and Senator Kevin Cramer (R-ND) recently introduced the TBI and PTSD Treatment Act [House Bill 4370; Senate Bill 2504], in late 2019 to direct the Veterans Administration (VA) to furnish...
Local doctor continues to push VA to approve Hyperbaric Oxygen Therapy for veterans
The AC133 antigen is a novel antigen selectively expressed on a subset of CD34+ cells in human fetal liver, bone marrow, and blood as demonstrated by flow cytometric analyses. In this study, we have further assessed the expression of AC133 on CD34+ cells in hemopoietic samples and found that there was a highly significant difference between normal bone marrow and cord blood versus aphereses (p <0.0001) but not between bone marrow and cord blood. Most of the clonogenic cells (67%) were contained in the CD34+AC133+ fraction. Compared with cultures of the CD34+AC133- cells, generation of progenitor cells in long-term culture on bone marrow stroma was consistently 10- to 100-fold higher in cultures initiated with CD34+AC133+ cells and was maintained for the 8-10 weeks of culture.
Study Reveals Oxygen-Rich Air Can Reverse Severe Brain Damage
The AC133 antigen is a novel antigen selectively expressed on a subset of CD34+ cells in human fetal liver, bone marrow, and blood as demonstrated by flow cytometric analyses. In this study, we have further assessed the expression of AC133 on CD34+ cells in hemopoietic samples and found that there was a highly significant difference between normal bone marrow and cord blood versus aphereses (p <0.0001) but not between bone marrow and cord blood. Most of the clonogenic cells (67%) were contained in the CD34+AC133+ fraction. Compared with cultures of the CD34+AC133- cells, generation of progenitor cells in long-term culture on bone marrow stroma was consistently 10- to 100-fold higher in cultures initiated with CD34+AC133+ cells and was maintained for the 8-10 weeks of culture.
Related Indications
Schedule a Consultation
Additional Research
Effects of Hyperbaric Oxygen Therapy on Inflammasome Signaling after Traumatic Brain Injury.
Abstract: Neuroinflammation plays an important role in secondary tissue damage after traumatic brain injury (TBI). Recently, the inflammasome-mediated inflammatory pathway has been observed in the inflammatory response of TBI. In this study, we investigated the...
Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage.
Abstract: Cognitive impairment may occur in 42-50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild...
Cognitive function in a traumatic brain injury hyperbaric oxygen randomized trial.
Abstract: Determine changes in cognition and post-traumatic stress disorder (PTSD) symptoms in subjects with traumatic brain injury (TBI) exposed to 2.4 atmospheres absolute (atm abs) breathing 100% oxygen vs. sham (1.3 atm-abs air). Fifty randomized subjects...