Stroke
Strokes are a highly prevalent condition that are the leading cause of chronic disability, the second leading cause of dementia (1), and the fifth leading cause of death in the US (2). Strokes occur when blood flow to a specific area of the brain is interrupted, or when a blood vessel bursts and causes bleeding in the brain. Lack of blood flow and/or brain bleeding results in brain cell death and damage, which can lead to cognitive impairments, motor issues, headaches, and vision problems (3).
Extivita Therapies for Stroke:
Extivita Therapies for Stroke Recovery:
Hyperbaric Oxygen Therapy
Neurofeedback
Supplements
Nutritional IV Therapy
Pulsed Electromagnetic Field Therapy
Hyperbaric Oxygen Therapy for Stroke:
Additional studies report similar findings of improved ADLs (activities of daily living), brain metabolism, and quality of life(5,6). Brain scans showed that the damaged locations of the brain were significantly healed and reactivated in more than half of the patients(6). HBOT improves stroke symptoms by healing brain cells that were initially damaged by the stroke as well as stimulating the growth of new brain cells(4,7).
Effects of HBOT on Stroke:
New Blood Vessel Formation
Increased Stem Cell Activity
Decreased Inflammation
Neurofeedback for Stroke:
The brain has been shown to have remarkable capacity to form and reorganize synaptic connections (neuroplasticity) and recovery even in severe chronic stroke. Neurofeedback can facilitate neuroplasticity and enhance motor learning, control, memory, and cognitive function (6-7).
IV Therapy for Stroke:
Vitamin C (ascorbic acid) is an important antioxidant molecule in the body and the brain. Ascorbate (reduced form of vitamin C) scavenges free radicals, recycles other antioxidants, protects brain cells from cell damage/death. Ascorbate has been associated with neuroprotection pre- stroke, in acute stage of (and reperfusion stage), and in chronic phases of stroke (8-10). In addition, we also offer B12 with our Vitamin C infusions. B12 has been shown to enhance nerve repair (11).
Pulsed Electromagnetic Field Therapy for Stroke:
Micro vessels play a big role in overall course of vascular diseases. Dysfunction to this system has been linked to a multitude of illnesses. The PEMF device has been shown to optimize the microcirculatory system, increasing perfusion to tissues and organs. When used in conjunction with HBOT, oxygen rich blood can be delivered to these areas, where healing can begin (12).
News & Research for Stroke:
Cerebral arterial gas embolism from attempted mechanical thrombectomy: recovery following hyperbaric oxygen therapy.
Cerebral arterial gas embolism is a recognised complication of endovascular intervention with an estimated incidence of 0.08%. Its diagnosis is predominantly clinical, supported by neuroimaging. The treatment relies on alleviating mechanical obstruction and reversing the proinflammatory processes that contribute to tissue ischaemia. Hyperbaric oxygen therapy is an effective treatment and has multiple mechanisms to reverse the pathological processes involved in cerebral arterial gas embolism. Symptomatic cerebral arterial gas embolism is a rare complication of endovascular intervention for acute ischaemic stroke.
Hyperbaric Oxygen Therapy in the Treatment of Acute Severe Traumatic Brain Injury: a Systematic Review.
There has been no major advancement in a quarter of a century for the treatment of acute severe traumatic brain injury (TBI). This review summarizes 40 years of clinical and pre-clinical research on the treatment of acute TBI with hyperbaric oxygen therapy (HBO2) in the context of an impending National Institute of Neurologic Disorders and Stroke (NINDS)-funded, multicenter, randomized, adaptive Phase II clinical trial – the Hyperbaric Oxygen Brain Injury Treatment (HOBIT) trial. Thirty studies (8 clinical and 22 pre-clinical) that administered HBO2 within 30 days of a TBI were identified from PubMed searches. The pre-clinical studies consistently reported positive treatment effects across a variety of outcome measures with almost no safety concerns, thus providing strong proof-of-concept evidence for treating severe TBI in the acute setting.
Hyperbaric oxygen in patients with ischemic stroke following cardiac surgery: a retrospective observational trial.
Hyperbaric oxygenation (HBO₂) involves breathing 100% oxygen under elevated ambient pressure in a hyperbaric chamber, thereby dissolving oxygen in the plasma. This results in an increase of arterial partial pressure of oxygen (pO₂). Though well established in experimental studies, HBO₂ treatment for ischemic stroke is still under discussion. From 2002-2014 HBO₂ (2.2 bar, 90 minutes one/day; average number per patient: 4.7) was applied in 49 consecutive patients (32 males, 17 females, mean age: 68.8 years, range 31.2 – 83.9) with acute neurological deficit following cardiac surgery (CABG 15; combined surgery 14; valve surgery 11; aneurysm repair 8;
References
- Roger, Véronique L., Alan S. Go, Donald M. Lloyd-Jones, Robert J. Adams, Jarett D. Berry, Todd M. Brown, Mercedes R. Carnethon, et al. “Heart Disease and Stroke Statistics—2011 Update.” Circulation 123, no. 4 (February 1, 2011): e18–209. https://doi.org/10.1161/CIR.0b013e3182009701.
- George, Mary G. “CDC Grand Rounds: Public Health Strategies to Prevent and Treat Strokes.” MMWR. Morbidity and Mortality Weekly Report 66 (2017). https://doi.org/10.15585/mmwr.mm6618a5.
- “Stroke: Causes, Symptoms, Diagnosis, and Treatment.” Medical News Today. Accessed June 26, 2019. https://www.medicalnewstoday.com/articles/7624.php.
- Hadanny, Amir, et al. “Hyperbaric Oxygen Therapy Improves Neurocognitive Functions of Post-Stroke Patients – a Retrospective Analysis.” Restorative Neurology and Neuroscience, vol. 38, no. 1, IOS Press, Jan. 2020, pp. 93–107. content.iospress.com, doi:10.3233/RNN-190959.
- Boussi-Gross, Rahav, et al. “Improvement of Memory Impairments in Poststroke Patients by Hyperbaric Oxygen Therapy.” Neuropsychology, vol. 29, no. 4, July 2015, pp. 610–21. PubMed, doi:10.1037/neu0000149.
- Efrati, Shai, Gregori Fishlev, Yair Bechor, Olga Volkov, Jacob Bergan, Kostantin Kliakhandler, Izhak Kamiager, et al. “Hyperbaric Oxygen Induces Late Neuroplasticity in Post Stroke Patients – Randomized, Prospective Trial.” PLOS ONE 8, no. 1 (January 15, 2013): e53716. https://doi.org/10.1371/journal.pone.0053716.
- Zhang, John H., Takkin Lo, George Mychaskiw, and Austin Colohan. “Mechanisms of Hyperbaric Oxygen and Neuroprotection in Stroke.” Pathophysiology 12, no. 1 (July 1, 2005): 63–77. https://doi.org/10.1016/j.pathophys.2005.01.003.
- Sreedharan S, Sitaram R, Paul JS, Kesavadas C. Brain-computer interfaces for neurorehabilitation. Crit Rev Biomed Eng. 2013;41(3):269-279. doi:10.1615/critrevbiomedeng.2014010697
- Kober, S.E., Schweiger, D., Witte, M. et al. Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. J NeuroEngineering Rehabil 12, 107 (2015). https://doi.org/10.1186/s12984-015–0105-6
- Harrison, Fiona E, and James M May. “Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2.” Free radical biology & medicine vol. 46,6 (2009): 719-30. doi:10.1016/j.freeradbiomed.2008.12.018
- Sánchez-Moreno, Concepción et al. “Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke.” Stroke vol. 35,1 (2004): 163-8. doi:10.1161/01.STR.0000105391.62306.2E
- Alexandrova, Margarita & Bochev, Petyo & Markova, Vanya & Bechev, Blagovest & Popova, Marina & Danovska, Maya & Simeonova, Virginia. (2003). Oxidative stress in the chronic phase after stroke. Redox report : communications in free radical research. 8. 169-76. 10.1179/135100003225001548.
- Wu, Fangfang et al. “Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury.” Frontiers in pharmacology vol. 10 406. 24 Apr. 2019, doi:10.3389/fphar.2019.00406
- https://www.imin-org.eu/images/science/Haug-Report-Bemer_2016_Englisch.pdf